Lead Selection Protocols for the Reconstruction of 12-Lead Electrocardiogram

Ekenedirichukwu N Obianom, Shamsu Idris Abdullahi, Noor Qaqos, Abdulhamed M Jasim, Fan
Feng, G André Ng, Xin Li

University of Leicester, Leicester, United Kingdom

Abstract

Electrocardiogram (ECG) lead reduction and signal
reconstruction are critical for enabling compact,
wearable cardiac monitoring systems. This study builds
on years of foundational research by systematically
evaluating various lead selection protocols to determine
the most effective subset of leads for reconstructing a full
12-lead ECG.

Unlike previous studies that often conflate lead
selection with reconstruction techniques, this work
decouples the two by applying a standardized linear
transformation method across all protocols. Among the
evaluated approaches, the protocol proposed by Finlay et
al. demonstrated the highest performance, achieving a
correlation coefficient of 0.93 and the lowest RMSE of
0.10mV. Three protocols consistently identified the same
optimal lead set (III, aVR, and V3) highlighting its
reliability. These three leads offer strong spatial diversity
and high correlation with the remaining ECG signals,
making them highly effective for signal reconstruction.

The findings have practical implications for the
development of efficient and cost-effective wearable ECG
devices. By using a standardized, evidence-based lead
subset, even simple reconstruction models can achieve
high performance, reducing the need for complex
algorithms and enabling scalable health technology
solutions.

1. Introduction

Electrocardiogram (ECG) reconstruction is the
synthesis of ECG leads from a recorded set of leads [1].
In the context of 12-lead ECG systems, this becomes
particularly important in cases where some leads are
corrupted by noise, omitted, or entirely unavailable. This
is also relevant in telemedicine and mobile health
applications, where reduced lead sets are often employed
to simplify data acquisition and enhance user comfort. By
enabling the recovery of missing leads, ECG
reconstruction supports more accurate diagnosis,
monitoring, and prognosis, even in resource-constrained
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or remote settings.

Numerous studies have shown promising results in
ECG reconstruction; however, they frequently employ
different sets of recorded leads as input to their
reconstruction models [1]. Although various input lead
combinations have demonstrated dependable
performance, it is evident that the selection of input leads
plays a significant role in determining the effectiveness of
the reconstruction model. Subtle design choices, such as
which leads are used as input, can have considerable
impact on the performance of the model [1, 2].

While several influential studies have attempted to
identify optimal lead sets for reconstruction, these
methods often differ in both design and evaluation criteria
[3-5]. To fairly compare their effectiveness, these
approaches must be tested on a common dataset using a
consistent reconstruction model. This paper adopts linear
regression (due to its simplicity and transparency) to
evaluate six lead selection protocols, with the goal of
identifying the most effective input lead set for ECG
reconstruction.

2. Method

2.1. Dataset

The dataset used in this study consists of 1,000 ECG
records, randomly selected from the CODE-15% dataset
[6] based on specific inclusion criteria detailed in the
accompanying metadata. Selection was restricted to
recordings from unique patients, each classified as
normal, with no documented cardiac conditions and no
missing leads.

After selection, all ECG signals were standardized to a
duration of 10 seconds and uniformly resampled to
500Hz. Preprocessing was performed using the ECGdeli
MATLAB toolbox [7], which included denoising, and
baseline extraction. Denoising was conducted using
standard filtering techniques with the following
parameters: a high-pass filter at 0.3Hz to remove baseline
wander, a low-pass filter at 120Hz to eliminate high-
frequency noise, and a notch filter at 60Hz to suppress
power line interference.
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2.2. Pipeline

The reconstruction pipeline for testing every protocol is
illustrated in Figure 1. Each protocol was applied to the
complete dataset to determine a hierarchy of leads based
on its selection criteria. The top three leads identified by
each lead selection protocol are used as inputs to a linear
regression model, which reconstructs the remaining nine
leads. The decision to use three input leads is based on
the findings of Schreck, Tricarico, Frank, Thielen,
Chhibber, Brotea and Leber [8], who demonstrated that
three leads can capture approximately 99% of the
information contained in a standard 12-lead ECG.
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where:Y = 9 by 1 column matrix of output values
X =1 by 3 column matrix of input variables
A = 3 by 9 matrix of coef ficents
C =1 by 9 column matrix of constants

It is important to note that while the original studies
employed various reconstruction techniques, linear
transformation (equation 1) is used consistently
throughout this study. This uniform approach allows for a
controlled evaluation of the impact of different lead
selection protocols, ensuring methodological consistency
and isolating the influence of lead choice on
reconstruction performance.

Moreover, the protocols evaluated in this study were
originally developed for identifying reduced lead sets in
body surface potential mapping (BSPM). Due to their
demonstrated effectiveness in that context, they are
adapted here for application in 12-lead ECG
reconstruction.

Each protocol will be assessed by comparing the
synthesised leads (generated using the top three leads
recommended by the protocol) to the original recorded
leads. The evaluation was conducted using two key
performance metrics: correlation coefficient and root
mean square error (RMSE). These metrics provide a
comprehensive assessment of both the morphological
similarity and amplitude accuracy of the reconstructed
signals.

To ensure robust and reproducible evaluation, each
lead selection protocol was assessed using ten-fold cross-
validation. This consistent validation strategy provided a

fair comparison across all experiments and minimized the
risk of overfitting.

Input signal: Linear

3 leads

~ Output signal:
9 leads

Transformation

Figure 1. Pipeline for the testing each selection protocol.
The top three selected leads are inputs and the remining
nine are outputs.

2.2.1. Protocol 1

This protocol establishes lead hierarchy using a cross-
correlation approach. Each lead is correlated with every
other lead (excluding self-correlation to prevent
artificially inflating the influence of any single lead). The
average correlation value for each lead is then computed
(equation 2), and the leads are ranked based on these
averages, with higher average correlations indicating
greater relevance.

n

_ 1

p; = mZ pij - (2)
i=

i*j

where:
p, = average correlation of lead j to all leads
pij = correlation of lead i to lead j
Jj = observed lead at any given point in time
i = other leads in the lead set
n = number of leads in lead set

2.2.2. Protocol 2

This protocol is based on the methodology proposed
by Lux, Smith, Wyatt and Abildskov [3]. It is designed to
quantify the information index of each lead relative to all
other leads, as defined in equation 3. Once the
information index ([;) is calculated for each lead, the
three leads with the highest I; values are selected for the
reconstruction task. These leads are considered to carry
the most comprehensive information about the remaining
ECG signals.

n

I = Z a?pf ... (3)

i=1

where: I; = information index of lead j

o; = standard deviation of the lead i
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2.2.3. Protocol 3,4, 5

These protocols are based on the methods proposed by
Finlay, Nugent, Donnelly, Lux, McCullagh and Black [4].
They operate by iteratively identifying the most
informative ECG leads until all leads have been ranked,
leaving only one unranked. The process begins by using
each lead individually to reconstruct the remaining leads
through linear transformation. A performance metric
(correlation, RMSE, or a combined multi-objective
criterion (MOC)) is then applied to evaluate and select the
most informative lead.

In subsequent iterations, the best-performing lead from
the previous step is combined with each of the remaining
unranked leads to reconstruct the others. The evaluation
metric is reapplied to determine the next most informative
lead. This iterative process continues until all leads have
been ranked based on their relative informativeness.
Protocol 3 uses correlation as the evaluation metric,
selecting leads with the highest average correlation as the
most informative. Protocol 4 uses RMSE, ranking leads
with the lowest average error as most important. Protocol
5 uses MOC that integrates both correlation and RMSE
into a unified score, where a lower MOC value indicates a
better-performing lead. The method for calculating MOC
is detailed in equation 4.

MOG; = rank,(j) + rankgysg () ... (4)

where:
rank,(j) = rank of lead j based on correlation

(1 = highest correlation)
rankgysg(j) = rank of lead j based on RMSE
(1 = lowest error)

2.2.4. Protocol 6

This protocol is based on the methodology proposed
by Barr, Spach and Herman-Giddens [5]. It utilizes
principal component analysis (PCA) to derive principal
components from the ECG signals and ranks the leads
according to their contributions to these components.
While the original study employed 30 principal
components due to its use of a 150-lead body surface
potential map (BSPM), this study limits the analysis to
the top 3 principal components, aligning with the use of a
standard 12-lead ECG dataset.

Once the top 3 principal components are identified, the
contribution of each lead to these components is
measured and summed, as described in eqn5. The three
leads with the highest cumulative contribution scores are
then selected as the input leads for reconstruction under
this protocol.

N

Importance; = Z'Gk‘j| ..(5)

k=1

where:

Importance; = sum of the contributions of lead j

N = number of components
k = the component in being examined
Gy,j = the importance of lead j to component k

3. Results

The results of this study demonstrate that Protocols 3,
4, and 5 yielded the highest performance across metrics,
as shown in Table 1. These protocols, which use
correlation, RMSE, and MOC, all identified a similar
optimal lead set: III, aVR, and V3. This input lead
combination proved most effective in reconstructing the
remaining ECG leads.

This finding aligns closely with the work of Butchy,
Jain, Leasure, Covalesky and Mintz [9], who concluded
that two limb leads and lead V3 offer the best coverage
for full 12-lead ECG reconstruction. Their results
emphasized the value of combining spatially diverse leads
with high correlation to the rest of the ECG.

Table 1. Average correlation (r) and RMSE in mV of the
synthesized leads against the original. The leads are based
on the hierarchy chosen by the protocols investigated.
“std” is the standard deviation of the metric to its left.

Protocol | Top 3 Leads r std | RMSE  std
1 V4, V5,11 0.74 0.28 0.15 0.14
2 VI1,V6,aVL | 0.83 0.22 0.16 0.16
3 aVR, IIL, V3 | 0.93 0.11 0.10 0.13
4 aVR, IIL, V3 | 0.93 0.11 0.10 0.13
5 aVR, IIL, V3 | 0.93 0.11 0.10 0.13
6 V3, V2, 11 0.76 0.25 0.13 0.14
4. Discussion and Conclusion

The results indicate that the approach proposed by Finlay,
Nugent, Donnelly, Lux, McCullagh and Black [4] is the
most effective for lead selection, demonstrating the
highest correlation and lowest RMSE among the
evaluated methods. This performance may be attributed
to the protocol’s emphasis on correlation and RMSE as
the primary evaluation metrics. The findings further
reveal that two limb leads, along with precordial lead V3
(Figure 2), serve as the most suitable input leads for
signal reconstruction compared to the configurations
recommended by alternative protocols.

This study builds on years of foundational research in
ECG lead reduction and signal reconstruction, aiming to
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advance the field by identifying the most effective leads
for reconstructing a full 12-lead ECG. Unlike prior
studies that often entangle lead selection with the
reconstruction technique itself, this work deliberately
decouples the two processes. By standardizing the
reconstruction method (using linear transformation across
all experiments) it isolates and evaluates the true impact
of lead choice. The goal is to provide a clear, evidence-
based recommendation for the optimal subset of leads to
be used in ECG reconstruction, regardless of the model
employed.

(@
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Figure 2. The locations of the electrodes of a wearable

ECG device that captures the input lead set recommended
from the findings.

This standardisation and selection of lead set have
significant implications for the design of wearable ECG
devices. In the absence of a highly specialized clinical
requirement, adopting a standard lead set (as
recommended by the findings of this study and shown in
Figure 2) can maximize efficiency and accuracy across
applications. Furthermore, with a more informative and
effective lead subset, even simple reconstruction models
can achieve strong performance, reducing the need for
complex, resource-intensive algorithms. This, in turn,
simplifies the architecture of embedded systems, leading
to reductions in both design complexity and
manufacturing cost, which are key considerations in the
development of scalable, affordable wearable health
technology.

It is also important to acknowledge the limitations of
this study. The analysis was conducted using a single
dataset, specifically the CODE-15% dataset, which is
distinct from the datasets originally used by the designers
of the evaluated lead selection protocols. Additionally,
the study focused exclusively on ECGs classified as
"normal." While this ensures controlled evaluation, it
limits the immediate applicability of the results to broader
clinical contexts.

To enhance the generalisability and clinical relevance
of the recommended lead set, future work should consider
the effect of gender, body shape and age in its
performance and suitability. It should also involve testing
on multiple datasets that reflect diverse patient
populations, including those with various cardiac

abnormalities. It would also be valuable to validate the
proposed lead set using non-linear reconstruction models,
such as deep neural networks or other advanced machine
learning techniques. This would help assess whether the
lead set maintains its effectiveness across a wider range
of reconstruction strategies and real-world conditions,
ultimately supporting its adoption in both research and
clinical practice.
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