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Abstract 

Electrocardiogram (ECG) lead reduction and signal 
reconstruction are critical for enabling compact, 
wearable cardiac monitoring systems. This study builds 
on years of foundational research by systematically 
evaluating various lead selection protocols to determine 
the most effective subset of leads for reconstructing a full 
12-lead ECG. 

Unlike previous studies that often conflate lead 
selection with reconstruction techniques, this work 
decouples the two by applying a standardized linear 
transformation method across all protocols. Among the 
evaluated approaches, the protocol proposed by Finlay et 
al. demonstrated the highest performance, achieving a 
correlation coefficient of 0.93 and the lowest RMSE of 
0.10mV. Three protocols consistently identified the same 
optimal lead set (III, aVR, and V3) highlighting its 
reliability. These three leads offer strong spatial diversity 
and high correlation with the remaining ECG signals, 
making them highly effective for signal reconstruction.  

The findings have practical implications for the 
development of efficient and cost-effective wearable ECG 
devices. By using a standardized, evidence-based lead 
subset, even simple reconstruction models can achieve 
high performance, reducing the need for complex 
algorithms and enabling scalable health technology 
solutions. 

 
 

1. Introduction 

Electrocardiogram (ECG) reconstruction is the 
synthesis of ECG leads from a recorded set of leads [1]. 
In the context of 12-lead ECG systems, this becomes 
particularly important in cases where some leads are 
corrupted by noise, omitted, or entirely unavailable. This 
is also relevant in telemedicine and mobile health 
applications, where reduced lead sets are often employed 
to simplify data acquisition and enhance user comfort. By 
enabling the recovery of missing leads, ECG 
reconstruction supports more accurate diagnosis, 
monitoring, and prognosis, even in resource-constrained 

or remote settings. 
Numerous studies have shown promising results in 

ECG reconstruction; however, they frequently employ 
different sets of recorded leads as input to their 
reconstruction models [1]. Although various input lead 
combinations have demonstrated dependable 
performance, it is evident that the selection of input leads 
plays a significant role in determining the effectiveness of 
the reconstruction model. Subtle design choices, such as 
which leads are used as input, can have considerable 
impact on the performance of the model [1, 2]. 

While several influential studies have attempted to 
identify optimal lead sets for reconstruction, these 
methods often differ in both design and evaluation criteria 
[3-5]. To fairly compare their effectiveness, these 
approaches must be tested on a common dataset using a 
consistent reconstruction model. This paper adopts linear 
regression (due to its simplicity and transparency) to 
evaluate six lead selection protocols, with the goal of 
identifying the most effective input lead set for ECG 
reconstruction. 

 
2. Method 

2.1. Dataset 

The dataset used in this study consists of 1,000 ECG 
records, randomly selected from the CODE-15% dataset 
[6] based on specific inclusion criteria detailed in the 
accompanying metadata. Selection was restricted to 
recordings from unique patients, each classified as 
normal, with no documented cardiac conditions and no 
missing leads. 

After selection, all ECG signals were standardized to a 
duration of 10 seconds and uniformly resampled to 
500Hz. Preprocessing was performed using the ECGdeli 
MATLAB toolbox [7], which included denoising, and 
baseline extraction. Denoising was conducted using 
standard filtering techniques with the following 
parameters: a high-pass filter at 0.3Hz to remove baseline 
wander, a low-pass filter at 120Hz to eliminate high-
frequency noise, and a notch filter at 60Hz to suppress 
power line interference. 
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2.2. Pipeline 

The reconstruction pipeline for testing every protocol is 
illustrated in Figure 1. Each protocol was applied to the 
complete dataset to determine a hierarchy of leads based 
on its selection criteria. The top three leads identified by 
each lead selection protocol are used as inputs to a linear 
regression model, which reconstructs the remaining nine 
leads. The decision to use three input leads is based on 
the findings of Schreck, Tricarico, Frank, Thielen, 
Chhibber, Brotea and Leber [8], who demonstrated that 
three leads can capture approximately 99% of the 
information contained in a standard 12-lead ECG. 

 
𝑌 = 𝑋𝐴 + 𝐶	… (1) 
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𝑤ℎ𝑒𝑟𝑒: 𝑌 = 9	𝑏𝑦	1	𝑐𝑜𝑙𝑢𝑚𝑛	𝑚𝑎𝑡𝑟𝑖𝑥	𝑜𝑓	𝑜𝑢𝑡𝑝𝑢𝑡	𝑣𝑎𝑙𝑢𝑒𝑠 
𝑋 = 1	𝑏𝑦	3	𝑐𝑜𝑙𝑢𝑚𝑛	𝑚𝑎𝑡𝑟𝑖𝑥	𝑜𝑓	𝑖𝑛𝑝𝑢𝑡	𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

𝐴 = 3	𝑏𝑦	9	𝑚𝑎𝑡𝑟𝑖𝑥	𝑜𝑓	𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑡𝑠	 
𝐶 = 1	𝑏𝑦	9	𝑐𝑜𝑙𝑢𝑚𝑛	𝑚𝑎𝑡𝑟𝑖𝑥	𝑜𝑓	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 

 
It is important to note that while the original studies 

employed various reconstruction techniques, linear 
transformation (equation 1) is used consistently 
throughout this study. This uniform approach allows for a 
controlled evaluation of the impact of different lead 
selection protocols, ensuring methodological consistency 
and isolating the influence of lead choice on 
reconstruction performance. 

Moreover, the protocols evaluated in this study were 
originally developed for identifying reduced lead sets in 
body surface potential mapping (BSPM). Due to their 
demonstrated effectiveness in that context, they are 
adapted here for application in 12-lead ECG 
reconstruction. 

Each protocol will be assessed by comparing the 
synthesised leads (generated using the top three leads 
recommended by the protocol) to the original recorded 
leads. The evaluation was conducted using two key 
performance metrics: correlation coefficient and root 
mean square error (RMSE). These metrics provide a 
comprehensive assessment of both the morphological 
similarity and amplitude accuracy of the reconstructed 
signals. 

To ensure robust and reproducible evaluation, each 
lead selection protocol was assessed using ten-fold cross-
validation. This consistent validation strategy provided a 

fair comparison across all experiments and minimized the 
risk of overfitting. 

 

 
Figure 1. Pipeline for the testing each selection protocol. 
The top three selected leads are inputs and the remining 
nine are outputs. 

 
2.2.1. Protocol 1 

This protocol establishes lead hierarchy using a cross-
correlation approach. Each lead is correlated with every 
other lead (excluding self-correlation to prevent 
artificially inflating the influence of any single lead). The 
average correlation value for each lead is then computed 
(equation 2), and the leads are ranked based on these 
averages, with higher average correlations indicating 
greater relevance.  
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𝑤ℎ𝑒𝑟𝑒: 
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𝑗 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑙𝑒𝑎𝑑	𝑎𝑡	𝑎𝑛𝑦	𝑔𝑖𝑣𝑒𝑛	𝑝𝑜𝑖𝑛𝑡	𝑖𝑛	𝑡𝑖𝑚𝑒 
𝑖 = 𝑜𝑡ℎ𝑒𝑟	𝑙𝑒𝑎𝑑𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑙𝑒𝑎𝑑	𝑠𝑒𝑡 
𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑙𝑒𝑎𝑑𝑠	𝑖𝑛	𝑙𝑒𝑎𝑑	𝑠𝑒𝑡 

 
2.2.2. Protocol 2 

This protocol is based on the methodology proposed 
by Lux, Smith, Wyatt and Abildskov [3]. It is designed to 
quantify the information index of each lead relative to all 
other leads, as defined in equation 3. Once the 
information index (𝐼') is calculated for each lead, the 
three leads with the highest 𝐼' values are selected for the 
reconstruction task. These leads are considered to carry 
the most comprehensive information about the remaining 
ECG signals. 

 

𝐼' =P𝜎&$𝜌&'$
(

&)!

…(3) 
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2.2.3. Protocol 3, 4, 5 

These protocols are based on the methods proposed by 
Finlay, Nugent, Donnelly, Lux, McCullagh and Black [4]. 
They operate by iteratively identifying the most 
informative ECG leads until all leads have been ranked, 
leaving only one unranked. The process begins by using 
each lead individually to reconstruct the remaining leads 
through linear transformation. A performance metric 
(correlation, RMSE, or a combined multi-objective 
criterion (MOC)) is then applied to evaluate and select the 
most informative lead. 

In subsequent iterations, the best-performing lead from 
the previous step is combined with each of the remaining 
unranked leads to reconstruct the others. The evaluation 
metric is reapplied to determine the next most informative 
lead. This iterative process continues until all leads have 
been ranked based on their relative informativeness. 
Protocol 3 uses correlation as the evaluation metric, 
selecting leads with the highest average correlation as the 
most informative. Protocol 4 uses RMSE, ranking leads 
with the lowest average error as most important. Protocol 
5 uses MOC that integrates both correlation and RMSE 
into a unified score, where a lower MOC value indicates a 
better-performing lead. The method for calculating MOC 
is detailed in equation 4. 

 
𝑀𝑂𝐶+ = 𝑟𝑎𝑛𝑘,(𝑗) + 𝑟𝑎𝑛𝑘-./0(𝑗) … (4) 

 
𝑤ℎ𝑒𝑟𝑒: 

𝑟𝑎𝑛𝑘,(𝑗) = 𝑟𝑎𝑛𝑘	𝑜𝑓	𝑙𝑒𝑎𝑑	𝑗	𝑏𝑎𝑠𝑒𝑑	𝑜𝑛	𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 
(1	 = 	ℎ𝑖𝑔ℎ𝑒𝑠𝑡	𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) 

𝑟𝑎𝑛𝑘-./0(𝑗) = 𝑟𝑎𝑛𝑘	𝑜𝑓	𝑙𝑒𝑎𝑑	𝑗	𝑏𝑎𝑠𝑒𝑑	𝑜𝑛	𝑅𝑀𝑆𝐸 
(1	 = 	𝑙𝑜𝑤𝑒𝑠𝑡	𝑒𝑟𝑟𝑜𝑟) 

 
2.2.4. Protocol 6 

This protocol is based on the methodology proposed 
by Barr, Spach and Herman-Giddens [5]. It utilizes 
principal component analysis (PCA) to derive principal 
components from the ECG signals and ranks the leads 
according to their contributions to these components. 
While the original study employed 30 principal 
components due to its use of a 150-lead body surface 
potential map (BSPM), this study limits the analysis to 
the top 3 principal components, aligning with the use of a 
standard 12-lead ECG dataset. 

Once the top 3 principal components are identified, the 
contribution of each lead to these components is 
measured and summed, as described in eqn5. The three 
leads with the highest cumulative contribution scores are 
then selected as the input leads for reconstruction under 
this protocol. 
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𝑤ℎ𝑒𝑟𝑒: 

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒' = 𝑠𝑢𝑚	𝑜𝑓	𝑡ℎ𝑒	𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠	𝑜𝑓	𝑙𝑒𝑎𝑑	𝑗 
𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 

𝑘 = 𝑡ℎ𝑒	𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡	𝑖𝑛	𝑏𝑒𝑖𝑛𝑔	𝑒𝑥𝑎𝑚𝑖𝑛𝑒𝑑 
𝐺1,' = 𝑡ℎ𝑒	𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒	𝑜𝑓	𝑙𝑒𝑎𝑑	𝑗	𝑡𝑜	𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡	𝑘 

 
3. Results 

The results of this study demonstrate that Protocols 3, 
4, and 5 yielded the highest performance across metrics, 
as shown in Table 1. These protocols, which use 
correlation, RMSE, and MOC, all identified a similar 
optimal lead set: III, aVR, and V3. This input lead 
combination proved most effective in reconstructing the 
remaining ECG leads. 

This finding aligns closely with the work of Butchy, 
Jain, Leasure, Covalesky and Mintz [9], who concluded 
that two limb leads and lead V3 offer the best coverage 
for full 12-lead ECG reconstruction. Their results 
emphasized the value of combining spatially diverse leads 
with high correlation to the rest of the ECG. 
 
Table 1. Average correlation (r) and RMSE in mV of the 
synthesized leads against the original. The leads are based 
on the hierarchy chosen by the protocols investigated. 
“std” is the standard deviation of the metric to its left. 

Protocol Top 3 Leads r std RMSE std 
1 V4, V5, II 0.74 0.28 0.15 0.14 
2 V1, V6, aVL 0.83 0.22 0.16 0.16 
3 aVR, III, V3 0.93 0.11 0.10 0.13 
4 aVR, III, V3 0.93 0.11 0.10 0.13 
5 aVR, III, V3 0.93 0.11 0.10 0.13 
6 V3, V2, II 0.76 0.25 0.13 0.14 

 
4. Discussion and Conclusion 

The results indicate that the approach proposed by Finlay, 
Nugent, Donnelly, Lux, McCullagh and Black [4] is the 
most effective for lead selection, demonstrating the 
highest correlation and lowest RMSE among the 
evaluated methods. This performance may be attributed 
to the protocol’s emphasis on correlation and RMSE as 
the primary evaluation metrics. The findings further 
reveal that two limb leads, along with precordial lead V3 
(Figure 2), serve as the most suitable input leads for 
signal reconstruction compared to the configurations 
recommended by alternative protocols. 

This study builds on years of foundational research in 
ECG lead reduction and signal reconstruction, aiming to 
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advance the field by identifying the most effective leads 
for reconstructing a full 12-lead ECG. Unlike prior 
studies that often entangle lead selection with the 
reconstruction technique itself, this work deliberately 
decouples the two processes. By standardizing the 
reconstruction method (using linear transformation across 
all experiments) it isolates and evaluates the true impact 
of lead choice. The goal is to provide a clear, evidence-
based recommendation for the optimal subset of leads to 
be used in ECG reconstruction, regardless of the model 
employed. 

 

 
Figure 2. The locations of the electrodes of a wearable 
ECG device that captures the input lead set recommended 
from the findings. 
 

This standardisation and selection of lead set have 
significant implications for the design of wearable ECG 
devices. In the absence of a highly specialized clinical 
requirement, adopting a standard lead set (as 
recommended by the findings of this study and shown in 
Figure 2) can maximize efficiency and accuracy across 
applications. Furthermore, with a more informative and 
effective lead subset, even simple reconstruction models 
can achieve strong performance, reducing the need for 
complex, resource-intensive algorithms. This, in turn, 
simplifies the architecture of embedded systems, leading 
to reductions in both design complexity and 
manufacturing cost, which are key considerations in the 
development of scalable, affordable wearable health 
technology. 

It is also important to acknowledge the limitations of 
this study. The analysis was conducted using a single 
dataset, specifically the CODE-15% dataset, which is 
distinct from the datasets originally used by the designers 
of the evaluated lead selection protocols. Additionally, 
the study focused exclusively on ECGs classified as 
"normal." While this ensures controlled evaluation, it 
limits the immediate applicability of the results to broader 
clinical contexts. 

To enhance the generalisability and clinical relevance 
of the recommended lead set, future work should consider 
the effect of gender, body shape and age in its 
performance and suitability. It should also involve testing 
on multiple datasets that reflect diverse patient 
populations, including those with various cardiac 

abnormalities. It would also be valuable to validate the 
proposed lead set using non-linear reconstruction models, 
such as deep neural networks or other advanced machine 
learning techniques. This would help assess whether the 
lead set maintains its effectiveness across a wider range 
of reconstruction strategies and real-world conditions, 
ultimately supporting its adoption in both research and 
clinical practice. 
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